sin(A+B2).cos(A−B2)+sin(C+D2).cos(C−D2)=2
⇒sin(A+B2).cos(A−B2)+sin(A+B2).cos(C−D2)=2
⇒sin(A+B2).(cos(A−B2)+cos(C−D2))=2
⇒2 sin(A+B2)cos(A−B+C−D4)cos(A−B−C+D4)=2
So,
sin(A+B2)=1 ⇒A+B=π, C+D=π →(1)
cos(A−B+C−D4)=1 ⇒A+C=B+D →(2)
cos(A−B−C+D4)=1 ⇒A+D=B+C →(3)
Adding (2) and (3), we get, A=B
Subtracting (2) and (3), we get, C=D
Using (1), we can conclude, A=B=C=D=π2
So, ∑cosA2cosB2=6×12=3