In a quadrilateral PQRS,∠P,∠Q,∠R and ∠S are interior angles. If ∠P:∠Q:∠R:∠S=1:2:3:4, then which angle is equal to 144∘.
Given ratio of angles of quadrilateral PQRS is 1:2:3:4
Let the angles of quadrilateral PQRS be 1x,2x,3x,4x, respectively.
We know, by angle sum property, the sum of angles of a quadrilateral is 360o.
⇒1x+2x+3x+4x=360o
⇒10x=360o
∴x=36o.
∴∠P=1x=1×36o=36o,
∠Q=2x=2×36o=72o,
∠R=3x=3×36o=108o
and ∠S=4x=4×36o=144o.
∴ ∠S=144o.
Hence, option D is correct.