In a rectangle ABCD, points X and Y are the midpoints of AD and DC, respectively. Lines BX and CD when extended intersect at E, lines BY and AD when extended intersect at F. If the area of ABCD is 60 then the area of BEF is
AB=x,BC=yxy=60XA=XD,∠XAB=∠XDE,∠EXD=∠AXB∴△XDE≅△XAB∴ar△XDE=ar△XAB
Similarly
△YDF≅△YCB∴ar△YDF=ar△YCB
Also, ∠FDY=∠FAB,∠DFY=DFY
∴△AFB∼△DFY∴AFDF=FBFY=ABDYAFDF=FBFY=xx2⇒AF=2DFAD=DF=y
Similarly DE=y
Now, ar△BEF=ar△YDF+ar△XDE+ar□DXYB+ar△DEF
=ar△YCB+ar△XAB+ar□DXYB+ar△DEF=ar□ABCD+ar△DEF=xy+12×DF×DE=xy+xy2=60+602=90