Given- A+B=900→(1)
Using A+B=900 & replace tanB by cotA, so it becomes
(tanA+cotA)+(tan2A+cot2A)+(tan3A+cot3A)=70→(2)
∵tan2A+cot2A=(tanA+cotA)2−2
tan3A+cot3A=(tanA+cotA)3−3(tanA+cotA)→(3)
Using (3) in equation (2), we get
x3+x2−2x−72=0,
where x=tanA+cotA
⇒x3+x2−2x−72=(x−4)(x2+5x+18)
only possible root is 4
so,
tanA+cotA=4
solve for tanA-
tanA+1tanA=4
⇒tan2A−tanA4+1=0
tanA=1±√16−4(1)(1)2
we get tana=y
y=2−√3,y=2+√3
so angle A=15 or 750 (degrees)
A=15(π180) or (75180×π) Radian
A=π12 or 5π12
so A and B are 5π12 or π12