wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a right angled triangle, acute angles A and B satisfy
tanA+tanB+tan2A+tan2B+tan3A+tan3B=70
find the angle A and B in radians.

Open in App
Solution

Given- A+B=900(1)

Using A+B=900 & replace tanB by cotA, so it becomes

(tanA+cotA)+(tan2A+cot2A)+(tan3A+cot3A)=70(2)

tan2A+cot2A=(tanA+cotA)22

tan3A+cot3A=(tanA+cotA)33(tanA+cotA)(3)

Using (3) in equation (2), we get

x3+x22x72=0,

where x=tanA+cotA

x3+x22x72=(x4)(x2+5x+18)

only possible root is 4

so,

tanA+cotA=4

solve for tanA-

tanA+1tanA=4

tan2AtanA4+1=0

tanA=1±164(1)(1)2

we get tana=y

y=23,y=2+3

so angle A=15 or 750 (degrees)

A=15(π180) or (75180×π) Radian

A=π12 or 5π12

so A and B are 5π12 or π12


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon