In a right ΔABC, right-angled at B, if tan A = 1 then, find the value of 2 sin A cos A.
Let BC = AB = k
According to Pythagoras theorem,
(Hypotenuse)2=(Base)2+(Altitude)2
AC2=AB2+BC2AC2=k2+k2=2k2AC=√2k2=k√2
sin A=Opposite sideHypotenuse side=BCAC=kk√2=1√2
cos A=Adjacent sideHypotenuse side=ABAC=kk√2=1√2
Then, 2sin A cos A=2×1√2×1√2=2×12=1