In a right △ ABC, if ∠ A is acute and tanA = 3/4, find the remaining trigonometric ratios of ∠ A.
Consider a Δ ABC in which ∠B = 90∘
For ∠A , we have :
Base = AB, perpendicular = BC and hypotenuse = AC
∴ tan A = PerpendicularBase = 34
⇒ BCAB=34
Let, BC = 3x units and AB = 4x units.
Then, AC = √AB2+BC2
= √(4x)2+(3x)2
= √(25x2) = 5x units.
Now, SinA = opposite/Hypotenuse
SinA = 3/5
Similarly , CosA = 4/5
Hence , CosecA = 5/3 ; SecA = 5/4 ; CotA = 4/3