CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a right triangle ABC in which B= 900 , a circle is drawn with AB as diameter intersecting the hypotenuse AC at P . Prove that the tangent to the circle at P bisects BC.

Open in App
Solution


Given: ΔABC is right triangle in which ∠ABC = 90°. A circle is drawn with side AB as diameter intersecting AC in P.

PQ is the tangent to the circle when intersects BC in Q.

Construction: Join BP.

Proof:

PQ and BQ are tangents drawn from an external point Q.

PQ = BQ .....(i) [Length of tangents drawn from an external point to the circle are equal]

⇒ ∠PBQ = ∠BPQ [In a triangle, equal sides have equal angles opposite to them]

As , it is given that,

AB is the diameter of the circle.

∴ ∠APB = 90° [Angle in a semi-circle is 90°]

APB + ∠BPC = 180° [Linear pair]

⇒ ∠BPC = 180° – ∠APB = 180° – 90° = 90°

In ΔBPC,

BPC + ∠PBC + ∠PCB = 180° [Angle sum property]

⇒ ∠PBC + ∠PCB = 180° – ∠BPC = 180° – 90° = 90° ....(ii)

Now,

BPC = 90°

⇒ ∠BPQ + ∠CPQ = 90° .....(iii)

From (ii) and (iii), we get,

⇒ ∠PBC + ∠PCB = ∠BPQ + ∠CPQ

⇒ ∠PCQ = ∠CPQ [∠BPQ = ∠PBQ]

In ΔPQC,

PCQ = ∠CPQ

PQ = QC .....(iv)

From (i) and (iv), we get,

BQ = QC

Thus, tangent at P bisects the side BC.


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon