In a right triangle ABC, right-angled at B,BC=12 cm and AB=5 cm. The radius of the circle inscribed in the triangle is
(a) 1 cm (b) 2 cm (c) 3 cm (d) 4 cm
Correct option is (b) 2 cm
Since, ΔABC is a right angle, therefore, by Pythagoras Theorem,
⇒AC=√AB2+BC2=√25+144=√132=13cm
Now, OQ,OP and OR are radius of the circle therefore, OQ=OP=OR=x (say) and
are also perpendicular to respective sides BC,AB and AC. [Radius ⊥ Tangent]
Also, join OA,OB and OC.
∴arΔABC=arΔAOB+arΔBOC+arΔAOC
⇒12×AB×BC=12×AB×PO+12×QO×BC+12×AC×RO
⇒5×12=5×x+12×x+13×x
⇒60=(5+12+13)x
∴x=6030=2cm
Hence, radius of incircle is 2cm.