S=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭
n(S)=36
Now,
Favourable outcomes i.e getting neither 9 nor 11 as the sum of numbers on the faces are
E=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(4,1)(4,2)(4,3)(4,4)(4,6)(5,1)(5,2)(5,3)(5,5)(6,1)(6,2)(6,4)(6,6)⎫⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪⎭
n(E)=30
P(E)=n(E)n(S)=3036
P(E)=56=5a