The correct options are
A maximum y intercept of CD=30
C minimum area of ABCD=18 square units
D maximum area of ABCD=242square units
Let the coordinates of the point C(x1,y1) and D(x2,y2) and |CD|=a
Equation of the CD will be
x−y=b
y1−y2x1−x2=1
Also,
a2=(x1−x2)2+(y1−y2)2a2=2[(x1+x2)2−4x1x2]
Equating line CD and curve x2=y
x2=x−b⇒x2−x+b=0
x1+x2=1x1x2=ba2=2(1−4b)
distance of C from the line AB
a=∣∣∣x1−y1+8√2∣∣∣a2=(b+8)22⇒4(1−4b)=(b+8)2⇒b=−2 or −30b=−2⇒a=3√2b=−30⇒a=11√2
maximum area of ABCD=242 unit2
minimum area of ABCD=18 unit2
maximum y intercept of the line
CD=30
minimum y intercept of the line
CD=2