ABCD is a square whose diagonals AC and BD intersect each other at right angles at O.
(i)∴∠AOB=∠AOD=90∘
In △ANB
∠ANB=180∘−(∠NAB+∠NBA)
⇒∠ANB=180∘−(45∘+45∘2) since NB is bisector of ∠ABD
⇒∠ANB=180∘−45∘−45∘2
⇒∠ANB=135∘−45∘2
But ∠LNO=∠ANB(vertically opposite angles)
∴∠LNO=135∘−45∘2 ........(1)
Now in △AMO,
∠AMO=180∘−(∠AOM+∠OAM)
⇒∠AMO=180∘−(90∘+45∘2) since MA is bisector of ∠DAO
⇒∠AMO=180∘−90∘−45∘2
⇒∠AMO=90∘−45∘2 ........(2)
Adding (1) and (2) we get
∠LNO+∠AMO=135∘−45∘2+90∘−45∘2
⇒∠LNO+∠AMO=225∘−45∘=180∘
⇒∠LNO+∠AMO=180∘
(ii)∠BAM=∠BAO+∠OAM
⇒∠BAM=45∘+45∘2=6712∘
And ⇒∠BMA=180∘−(∠AOM+∠OAM)
⇒∠BMA=180∘−(90∘+45∘2)
⇒∠BMA=90∘−45∘2=6712∘
∴∠BMA=∠BAM
(iii) In quadrilateral ALOB
∵∠ABO+∠ALO=45∘+90∘+45∘=180∘
∴,ALOB is a cyclic quadrilateral.