wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a survey, it was found that 30% of the movie-goers watch thrillers, 40% watch comedies, and 30% watch romances. It was also recorded that 10% watch only thrillers, 20% watch only comedies, while 10% watch only romances. If 15% of the movie-goers watch both thrillers and romances, find the percentage of movie-goers who watch all three genres of movies.

A
10%
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
15%
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5%
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
20%
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 10%
Using a Venn diagram to represent the given information, we find:


In the diagram, we have:

A=People who watch thrillers and comedies but not romances

B=People who watch thrillers and romances but not comedies

C=People who watch romances and comedies but not thrillers

X=People who watch all three genres of movies

Now, we know that:

30% of the people love thrillers10%+A+X+B=30%A+X+B=20%....(Eqn 1)

40% of the people love comedies20%+A+X+C=40%A+X+C=20%....(Eqn 2)

30% of the people love romances10%+B+X+C=30%B+X+C=20%....(Eqn 3)

Now, we also know that 15% of the people watch both thrillers and romances.

B+X=15%....(Eqn 4)

Combining equations 3 and 4, we get:

B+X+C=20%....(Eqn 3)B+X=15%....(Eqn 4)15%+C=20%C=5%

So, we can rewrite equation 2 as:

A+X+C=20%....(Eqn 2)A+X+5%=20%A+X=15%

Now, rewriting equation 1, we get:

A+X+B=20%....(Eqn 1)15%+B=20%B=5%

Hence,

C=5% and B=5%

Now, including this information in equation 3, we get:

B+X+C=20%....(Eqn 3)5%+X+5%=20%X+10%=20%X=10%

Hence, 10% of movie-goers watch all three genres of movies.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sets and Venn Diagrams
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon