We have, n(U)=100, n(A)=28, n(B)=30, n(C)=42, n(A∩B)=8, n(A∩C)=10, n(B∩C)=5
and n(A∩B∩C)=3
Number of persons who read none of the magazine,
i.e., n(A∪B∪C)′=n(U)−n(A∪B∪C)
=n(U)−[n(A)+n(B)+n(C)−n(A∩B)−n(A∩C)−n(B∩C)+n(A∩B∩C)]
=100−(28+30+42−8−10−5+3)
= 100-80=20
Number of persons who read magazine C only.
i.e. n(C∩A′∩B′)=n[C∩(A∪B)′]=n(C∩(A∪B))
=n(C)−n[C∩(A∪B)′]=n(C∩(A∪B))
=n(C)−[n(C∩A)+n(C∩B)]−n[C∩A∩B]
=42−(10+5−3)=42−12=30