In a trapezium ABCD, AB|| DC and DC = 2AB, FE drawn parallel to AB cuts AD in F and BC in E such that 4BE = 3EC. Diagonal DB intersects EF at G. Prove that 7FE = 10 AB. [4 MARKS]
Open in App
Solution
Application of theorems: 2 Marks Calculation: 2 Marks
Proof: GE||DC[AB||DC and EF || AB] ⇒Δbge∼ΔBDC[AAsimilarly]∴BGBD=BEBC=GEDC⇒BGBD=GEDC=37{∵BEEC=E4⇒BEBE=37}⇒GEDC=37andBGBD=37⇒GE=37DC⇒GE=37×2AB=67AB⇒GE=67AB…(i)∴DGBC=47∠GDF=∠BDA(Common)∠DFG=∠DAB(Correspondingangle)∴ΔDFG∼ΔDAB∴FGAB=DGBC⇒FGAB=47⇒fg=47AB Adding (i) and (ii), we get ⇒GE+FG=67AB+47AB⇒FE=107AB⇒7EF=10AB