In a trapezium ABCD, AB II DC and DC = 2 AB. FE drawn parallel to AB cuts AD in F and BC in E such that 4BE = 3EC. Diagonal DB intersects EF at G. Prove that 7FE = 10AB.
Sol: GE II DC
ΔBGE∼ΔBDC (AA condition)
So,BGBD=BEBC=GEDC
or,BGBD=GEDC=37[BEEC=34⇒BEBC=37]
⇒GEDC=37,alsoBGBD=37
⇒GE=37DC
⇒GE=67AB−−−−(i),∴DGBD=47
Also, ΔDFG ~ ΔDAB
∴FGAB=DGBD⇒FGAB=47
FG=47AB−−−−−−−−−−(ii)
Adding (i) and (ii), we get
⇒GE+FG=67AB+47AB
⇒FE=107AB
⇒7FE=10AB