wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a trapezium ABCD,ABDC and DC=2AB. EF drawn parallel to AB cuts AD in F and BC in E such that BEEC=34. Diagonal DB intersects EF at G. Prove that 7FE=10AB.

Open in App
Solution

In ΔDFGandΔDAB,
1=2[CorrespondingsABFG]
FDG=ADB[Common]
ΔDFGΔDAB[ByAA ruleofsimilarity]
DFDA=FGAB(i)
FDG=ADB[Common]
ΔDFGΔDAB[ByAAruleofsimilarity]
DFDA=FGAB(i)
Again in trapezium ABCD
EFABDC
AFDF=BEEC
AFDF=34[BEEC=34(given)]
AFDF+1=34+1
AF+DFDF=74
ADDF=74DFAD=47(ii)
From (i) and (ii), we get
FGAB=47 i.e., FG=47AB(iii)
In ΔBEGandΔBCD, we have
BEG=BCD[CorrespondingangleEGCD]
GBE=DBC[Common]
ΔBEGΔBCD[ByAAruleofsimilarity]
BEBC=EGCD
37=EGCD
[BEEG=37i.e.,ECBE=43EC+BEBE=4+33BCBE=73]
EG=37CD=37(2AB)[CD=2AB(given)]
EG=67AB(iv)
Adding (iii) and (iv), we get
FG+EG=47AB+67AB=107AB
EF=107ABi.e.,7EF=10AB.
Hence proved.
870393_327401_ans_66f520bf738e4127908c4a4b296642c5.bmp

flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parallel Lines and Transversal
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon