In a trapezium ABCD,AB∥DC and DC=2AB. EF drawn parallel to AB cuts AD in F and BC in E such that BEEC=34. Diagonal DB intersects EF at G. Prove that 7FE=10AB.
Open in App
Solution
In ΔDFGandΔDAB, ∠1=∠2[Corresponding∠s∵AB∥FG] ∠FDG=∠ADB[Common] ∴ΔDFG∼ΔDAB[ByAA ruleofsimilarity] ∴DFDA=FGAB…(i) ∠FDG=∠ADB[Common] ∴ΔDFG∼ΔDAB[ByAAruleofsimilarity] ∴DFDA=FGAB…(i) Again in trapezium ABCD EF∥AB∥DC ∴AFDF=BEEC ⇒AFDF=34[BEEC=34(given)] ⇒AFDF+1=34+1 ⇒AF+DFDF=74 ⇒ADDF=74⇒DFAD=47…(ii) From (i) and (ii), we get FGAB=47 i.e., FG=47AB…(iii) In ΔBEGandΔBCD, we have ∠BEG=∠BCD[Correspondingangle∵EG∥CD] ∠GBE=∠DBC[Common] ∴ΔBEG∼ΔBCD[ByAAruleofsimilarity] ∴BEBC=EGCD ∴37=EGCD [BEEG=37i.e.,ECBE=43⇒EC+BEBE=4+33⇒BCBE=73] ∴EG=37CD=37(2AB)[∵CD=2AB(given)] ∴EG=67AB…(iv) Adding (iii) and (iv), we get FG+EG=47AB+67AB=107AB ⇒EF=107ABi.e.,7EF=10AB. Hence proved.