In a trapezium ABCD, AB∥DC , BD⊥AD, AC⊥BC, If AD=15,BC=15 and AB=25. Find Ar(▢ABCD)
Given:
In trapezium ABCD,
AB∥DC
BD⊥AD
AC⊥BC
AD=15,BC=15 and AB=25
Now, In ΔABD
According to Pythagoras theorem,
AB2=AD2+DB2
⇒252=152+BD2
⇒625=225+BD2
⇒BD2=625−225
⇒BD2=400
⇒BD=20
Now,
Area of the ΔABD=12×AD×BD
=12×15×20
=15×10
⇒ Area of the ΔABD=150 sq. units ---(1)
in figure, by construction DP⊥AB
⇒ Area of the ΔABD=12×AB×DP
⇒12×25×DP=150
⇒DP=150×225
⇒DP=12
Thus the height of trapezium is 12 units.
Now, In ΔADP
According to Pythagoras theorem,
AD2=AP2+DP2
⇒152=122+AP2
⇒225=144+AP2
⇒AP2=225−144
⇒AP2=81
⇒AP=9
Since, By RHS congruence, ΔAPD≅ΔBQC
and AP=QB
$QB = 9$
Now, CD=PQ=25−(9+9)=7
Therefore, in trapezium ABCD,
Lengths of the parallel sides are AB=25 units and CD=7 units
Distance between the parallel sides =12 units
Area of Trapezium =12× (Sum of parallel sides) × Height
=12×(25+7)×12
=12×(32)×12
=16×12
=192
Hence, A(▢ABCD)=192 sq. units.