The correct options are
B secC=√17
C △ABC is an acute angled triangle
Given : cotA⋅cotC=12 and cotB⋅cotC=118
So, tanA⋅tanC=2 ⋯(1)
tanB⋅tanC=18 ⋯(2)
Let tanC=x. Then
tanA=2x, tanB=18x
In a triangle, we know that
tanA+tanB+tanC=tanA⋅tanB⋅tanC⇒2x+18x+x=2x⋅18x⋅x⇒20+x2=36⇒x=±4
When x=−4, then
tanA=−12, tanB=−92, tanC=−4
All angles are greater than 90∘, which is not possible, so
x=4⇒tanA=12,tanB=92,tanC=4
So, △ABC is acute angled triangle.
Now, secA=√1+tan2A=√52
secC=√1+tan2C=√17