In a triangle ABC, a=7,b=8,c=9, BD is the median and BE the altitude from the vertex B, then
Open in App
Solution
In △ABC,cosA=b2+c2−a22bc=82+92−722.8.9=23 And in △ABD,cosA=AB2+AD2−BD22.AB.AD=92+42−BD22.9.4 97−BD272=23⇒BD2=49⇒BD=7 ⇒△BCD is isosceles triangle ⇒CE=ED=2 Now △BEDBD2=BE2+ED2 ⇒BE=√72−22=√45 And now AE=AD+ED=4+2=6.