In a triangle ABC, a(a+c-b)b(b+c-a) is equal to
(1–cosA)(1–cosB)
(1+cosB)(1+cosA)
(1–cosA)(1+cosB)
None of these
Explanation for the correct option:
Finding the value of the expression:
Given,
a(a+c-b)b(b+c-a)
Multiplying and dividing the above expression by (a+b+c)
a(a+c-b)b(b+c-a)=a(a+c–b)(a+c+b)b(b+c–a)(b+c+a)=a((a+c)2–b2)b((b+c)2–a2)=a(a2+c2+2ac–b2)b(b2+c2+2bc–a2)=a(2acCosB+2ac)b(2bcCosA+2bc)bycosinerule=2a2c(CosB+1)2b2c(CosA+1)=sin2A(1+cosB)sin2B(1+cosA)bysinerule=(1–cos2A)(1+cosB)(1–cos2B)(1+cosA)=(1–cosA)(1–cosB)[∵(a2-b2)=(a+b)(a-b)]
Hence, the correct option is A.
A(→a), B(→b), C(→c) are the vertices of a triangle ABC and R(→r) is any point in the plane of triangle ABC, then →r.(→a×→b+→b×→c+→c×→a) is always equal to