In a triangle ABC,AB=8cm,∠B=30∘,∠A=45∘. The area of the triangle will be equal to.
16(√3−1) cm2
Draw CD perpendicular to AB
In triangle ACD
∠ACD=180∘−(90∘+45∘)=45∘
So,AD=DC , Let it be equal to x
In triangle ADC, the angles are 45∘,45∘,90∘
The corresponding sides can be calculated as
⇒sin(45):sin(45):sin(90)
⇒1√2:1√2:1
⇒1:1:√2
45∘45∘90∘1:1:√2↓↓↓ADDCAC↓↓↓xx√2x
In triangle CBD, the angles are 30∘,60∘,90∘
The corresponding sides can be calculated as
⇒sin(30):sin(60):sin(90)
⇒12:√32:1
⇒1:√3:2
30∘60∘90∘1:√3:2↓↓↓CDDBCB↓↓↓xx√32x
AB=AD+DB
8=x+x√3
x(1+√3)=8
x=8(1+√3)×(√3−1)(√3−1)
x=8(√3−1)(3−1)=4(√3−1)cm
Area of triangle ABC = 12×AB×CD
=12×8×x
=12×8×4(√3−1)
16(√3−1)cm2