In a triangleABC, AB=AC. Suppose the bisector of angleACBmeets AB at M. Let AM+MC=BC. Prove angleBAC= 100∘
Open in App
Solution
Construct MD with D on BC such that MD = BD
Let MD =BD. ΔMDBisisocelers.∠BMD=∠MBD=α⇒∠AMD=180∘−α. Consider Quadrilatral AMDC. ∠AMD=180∘−α & ∠ACD=α ∴∠AMD+∠ACD=180∘. Since they are opposite ∠BAC=180∘−2α Join AD.∠MAD=∠MCD=α2 (angle is same segment) & ∠ADM=∠ACM=α2 ∴∠MAD=∠ADM⇒ΔADM is isocesess. Join AD.∠MAD=∠MCD=α2 (angle is same segrment) & ∠ADM=∠ACM=α2 ∴∠MAD=∠ADM⇒ΔADM is isocesess. ⇒AM=MD. But RD =BD ⇒ AM =BD. Now BC =AM +MC (Given) =BD +MC =BD +DC ⇒CM=DC⇒ΔCMDisisoceler.∴∠CDM=∠CMD=2α∴∠CMD=α+2α=3α=∠BAC+α2=120∘−2α+α25α−α2=180∘aα2=180∘⇒α=40∘∠BAC=180∘−2(40)=180∘−Proved