In △BDE∠BDE=90−∠B
And in △AED∠ADE=∠B as ∠ADE+∠BDE=90
A) In △ABDAD=CsinB and BD=CcosB ...(1)
Therefore area of △ABD=12AD×BD=12c2sinBcosB=14c2sin2B
B) In △ACDAD=BsinC and CD=bcosC
Therefore area of △ACD=12×AD×CD=12b2sinCcosC=14b2sin2C
C) In △ADEAE=ADsin(ADE)=ADsinB and ED=ADcos(ADE)=ADcosB
Therefore area of △ADE=12×AE×ED12ADsinB×ADcosB
Substituting values from (1)
△ADE=14c2sin2Bsin2B
D) In △BDEDE=BDsinB and BE=BDcosB
Therefore area of △BDE=12×DE×BE=12×BDsinB×BDcosB
Substituting value from (1)
△BDE=14C2cos2Bsin2B