In a △ABC, ∠A=55o, ∠B=15o, ∠C=110o then c2−a2 is equal to
ab
2ab
-ab
None of these
csin110o=bsin15o=asin55o=k Now c2−a2=k2sin2110o−k2 sin255o = k2(sin110o+sin15o)(sin110o−sin15o) = k2(2sin165o2cos55o2)(2cos165o2sin55o2) = k2sin165osin55o = (ksin15o)(ksin55o)=ab
The area of a △ ABC is a2−(b−c)2 then tan A is equal to