In a triangle ABC, angle A is greater than B. If the measures of angles A and B satisfy the equation 3 sin x–4 sin3x=k,0<k<1, then the value of angle C is
2π3
3 sin x−4 sin3x=ksin 3x=k⇒ sin 3A=k,sin 3B=k⇒ sin 3A−sin 3B=0⇒2 sin(3A−3B2)cos(3A+3B2)=0⇒cos32(A+B)=0⇒A+B=π3⇒C=2π3