Sum of Trigonometric Ratios in Terms of Their Product
In a triangle...
Question
In a triangle ABC, angles A,B,C are in A.P.Then limx→c√(3−4sinAsinC)|A−C|
A
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1 ∵A,B,C are in A.P ⇒2B=A+C and A+B+C=1800 ⇒(A+C)+B=1800 ⇒2B+B=3B=1800 or B=600 Using cosine rule, ∴cosB=cos600⇒12=a2+c2−b22ac ⇒a2+c2−b2=ac ⇒a2+c2=b2+ac ⇒(a−c)2=b2−ac ⇒|a−c|=√(b2−ac) Using sine Rule, ⇒|sinA−sinC|=√sin2B−sinAsinC ⇒2cos(A+C2)∣∣∣sin(A−C2)∣∣∣=√34−sinAsinC ∴limx→c√34−sinAsinC|A−C|=limx→c2∣∣∣sin(A−C2)∣∣∣|A−C|2×2=|1|=1