The correct option is
A acosθIn △ABC,A+B+C=π and a=2RsinA,b=2RsinB,c=2RsinC
bcos(C+θ)+ccos(B−θ)=R(2sinBcos(C+θ)+2sinCcos(B−θ)) =R(sin(B+C+θ)+sin(B−C−θ)+sin(B+C−θ)+sin(C−B+θ))
=R(sin(π−(A−θ))+sin(π−(A+θ))+sin(B−C−θ)−sin(B−C−θ))
=R(sin(A−θ)+sin(A+θ))
=R(2sinAcosθ)
=(2RsinA)cosθ
=acosθ