In a triangle ABC, b=√3, c = 1 and ∠A=300, then the largest angle of the triangle is
120°
Given that, b=√3,c=1 and ∠A=300
By cosine rule, cos A=b2+c2−a22bc
⇒cos 300=3+1−a22√3
⇒ √32=4−a22√3
⇒ 4−a2=3
⇒ a2=1
∴ ∠A=∠C=300
⇒ ∠B=1200