The correct option is C c24
In a △ABC,
ADBD=ACBC=ba ...............(1)
and CD.DE=AD.BD ..................(2)
Now, from eqn(1)
ADb=BDa
=AD+BDb+a
=ABa+b
=ca+b
∴AD=bca+b,BD=aca+b (3)
From eqns(2) and (3), then
CD.DE=abc2(a+b)2
∵A.M≥G.M
⇒a+b2≥√ab
Squaring both sides, we get
⇒(a+b2)2≥ab
⇒(a+b)24≥ab
⇒ab(a+b)2≤14
Hence,abc2(a+b)2≤c24