It is given that cos2A+cos2B+cos2C=1, then,
cos2A+(1−sin2B)+cos2C=1
(cos2A−sin2B)+1+cos2C=1
1+cos(A+B)cos(A−B)+cos2C=1
1+cos(180−C)cos(A−B)+cos2C=1
1−cosCcos(A−B)+cos2C=1
−cosC(cos(A−B)−cosC)=0
cosC(cos(A−B)−cos(180−(A+B)))=0
cosC(cos(A−B)+cos(A+B))=0
cosC(2cosAcosB)=0
cosAcosBcosC=0
cosA=0orcosB=0orcosC=0
This gives that,
A=90∘orB=90∘orC=90∘
Therefore, the triangle is right angled triangle.