The correct option is C equilateral
cosA+cosB+cosC=32
Using transformation angle formula, we have
(cosA+cosB)+cosC=32
⇒2cos(A+B2)cos(A−B2)+cosC=32
Using sub-multiple angle formula to cosC=1−2sin2C2 we get
⇒2cos(A+B2)cos(A−B2)+1−2sin2C2=32
Since A+B+C=π⇒A+B2=π2−C2
⇒2cos(π2−C2)cos(A−B2)−2sin2C2=32−1
⇒2sin(C2)cos(A−B2)−2sin2C2=12
⇒2sin(C2)[cos(A−B2)+sin(C2)]=12
Again
⇒2sin(C2)[cos(A−B2)+sin(π2−A+B2)]=12
⇒2sin(C2)[cos(A−B2)+cos(A+B2)]=12
Using transformation angle formula, we get
⇒sin(C2)[2sin(B2)sin(A2)]=14
⇒sin(A2)sin(B2)sin(C2)=18
∴sin(A2)=12,sin(B2)=12,sin(C2)=12
⇒sin(A2)=sinπ6,sin(B2)=sinπ6,sin(C2)=sinπ6
∴(A2)=(B2)=(C2)=π6
⇒∠A=∠B=∠C=2×π6=π3
Hence, the triangle is equilateral.