wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a triangle ABC,cosA+cosB+cosC=32 then the triangle is

A
isosceles
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
right-angled
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
equilateral
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
none of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C equilateral
cosA+cosB+cosC=32
Using transformation angle formula, we have
(cosA+cosB)+cosC=32
2cos(A+B2)cos(AB2)+cosC=32
Using sub-multiple angle formula to cosC=12sin2C2 we get
2cos(A+B2)cos(AB2)+12sin2C2=32
Since A+B+C=πA+B2=π2C2
2cos(π2C2)cos(AB2)2sin2C2=321
2sin(C2)cos(AB2)2sin2C2=12
2sin(C2)[cos(AB2)+sin(C2)]=12
Again
2sin(C2)[cos(AB2)+sin(π2A+B2)]=12
2sin(C2)[cos(AB2)+cos(A+B2)]=12
Using transformation angle formula, we get
sin(C2)[2sin(B2)sin(A2)]=14
sin(A2)sin(B2)sin(C2)=18
sin(A2)=12,sin(B2)=12,sin(C2)=12
sin(A2)=sinπ6,sin(B2)=sinπ6,sin(C2)=sinπ6
(A2)=(B2)=(C2)=π6
A=B=C=2×π6=π3
Hence, the triangle is equilateral.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solution of Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon