In a triangle ABC, D is the middle point of BC. If AD is perpendicular to AC, then cosAcosC=
A
−2b2ac
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2(c2+a2)3ca
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2(c2−a2)3ca
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2b2ac
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C2(c2−a2)3ca In ΔABC, cosA=b2+c2−a22bc⋯(i)
In ΔCAD, cosC=ACCD=b(a/2)=2ba⋯(ii)
In △BCE,AD bisect both sides BC and EC
So, BE∥AD,BE=2AD and ∠DAB=∠ABE
So, ∠ABE=180∘−(∠E+∠EAB)=180∘−(90∘+180∘−∠A)=∠A−90∘
In ΔABD, BDsin(A−900)=ABsin∠ADB cosA=−bc⋯(iii)[from Eq.(ii)].From (i) and (iii) b2+c2−a22bc=−bc b2+c2−a2=−2b2 or c2−a2=−3b2 −b2=c2−a23
Now, cosAcosC=−2b2ac cosAcosC=2(c2−a2)3ca