The correct option is A 1−cosA1−cosB
a(a+c−b)b(b+c−a)
Multiplying and dividing by (a+b+c), we get
=a[(a+c)2−b2]b[(b+c)2−a2]
=a[a2+c2−b2+2ac]b[b2+c2−a2+2bc]
=a[2ac(cosB+1)]b[2bc(cosA+1)]
=a2(1+cosB)b2(1+cosA)
=a2sin2B.(1−cosA)b2sin2A(1−cosB)
Now by sine rule
asinA=bsinB=k
Hence
a2sin2A.sin2Bb2.1−cosA1−cosB
=1−cosA1−cosB.