In a △ABC,E is the midpoint of side BC and D is a point on side AC. If length of side AC is 1 unit and ∠BAC=60∘,∠ACB=20∘,∠DEC=80∘, then the value of Area(△ABC)+2Area(△CDE) is
A
√316
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
√32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
√34
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√38
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D√38 Let Area(△ABC)=Δ1 and Area(△CDE)=Δ2
Δ1=12×AB×AC×sin60∘⇒Δ1=√34AB
Using sine rule in △ABC, we get ABsin20∘=ACsin100∘⇒Δ1=√34sin20∘sin100∘⇒Δ1=√32sin10∘cos10∘cos10∘⇒Δ1=√32sin10∘⋯(1)
Now, Δ2=12×CD×CE×sin20∘ △CED is isosceles where CD=CE=BC2
Using sine rule in △ABC, we get BC=ACsin60∘sin100∘=√32sin100∘
So, Δ2=12×(√34sin100∘)2sin20∘ ⇒Δ2=332sin20∘cos210∘⇒Δ2=316sin10∘cos10∘⋯(2)