The correct option is C right angled
Given: 2△2=a2b2c2a2+b2+c2
⇒2△2(a2+b2+c2)=a2b2c2
⇒a2+b2+c2=(abc△)2.12
=⎛⎜
⎜
⎜⎝abcabc4R⎞⎟
⎟
⎟⎠2.12 where △=abc4R
=8R2
Using sine rule, we have
a2+b2+c2=8R2
⇒(2RsinA)2+(2RsinB)2+(2RsinC)2=8R2
⇒4R2[sin2A+sin2B+sin2C]=8R2
⇒sin2A+sin2B+sin2C=2
⇒1−cos2A+1−cos2B+sin2C=2
⇒cos2A+cos2B−sin2C=0
⇒cos2A+cos(B+C)cos(B−C)=0
⇒cos2A+cos(π−A)cos(B−C)=0
⇒cos2A−cosAcos(B−C)=0
⇒cosA[cosA−cos(B−C)]=0
⇒cosA[cos(π−(B+C))−cos(B−C)]=0
⇒−cosA[cos(B+C)+cos(B−C)]=0
⇒cosA[2cosBcosC]=0
⇒cosAcosBcosC=0
⇒A=900, or B=900 or C=900