wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a triangle ABC, if AB=120 and sinA2sinB2sinC2=132, then the value of 8cosC is

Open in App
Solution

Given :
AB=120
sinA2sinB2sinC2=132

sinA2sinB2sinC2=1322sinA2sinB2sinC2=116(cosAB2cosA+B2)sinC2=116(12sinC2)sinC2=116(cos(A+B2)=cos(π2C2)=sinC2)sin2C212sinC2+116=0(sinC214)2=0sinC2=14cosC=12sin2C2=118cosC=788cosC=7

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon