In a △ ABC, if a cos A = b cos B, show that the triangle is either isosceles or right angled.
Using sine rule, asin A=bsin B=csin C = k
Then,
Now, acos A = bcos B
⇒ k sin A cos A = k sin B cos B
⇒ 2 sin A cos A = 2 sin B cos B [multiply by 2]
⇒ sin 2 A = sin 2 B
⇒ 2 A = 2 B or 2 A = π - 2 B
⇒ A = B or A + B = π2
⇒ A = B or C = π2
Hence, △ ABC is either isosceles or right angled.
Hence proved.