In a △ABC, if cosA+2cosB+cosC=2, then the sides of triangle are in
A
A.P.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
G.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
H.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is AA.P. Given, cosA+2cosB+cosC=2⇒cosA+cosC=2(1−cosB)⇒2cos(A+C2)⋅cos(A−C2)=4sin2B2[As,cos(A+C2)=cos(π2−B2)=sinB2]⇒cos(A−C2)=2cos(A+C2)⇒cosA2⋅cosC2+sinA2⋅sinC2=2cosA2⋅cosC2−2sinA2⋅sinC2⇒cotA2⋅cotC2=3⇒√s(s−a)(s−b)(s−c)⋅√s(s−c)(s−a)(s−b)=3⇒s(s−b)=3⇒s=3s−3b⇒2s=3b⇒a+c=2b ∴a,b,c are in A.P.