In a triangle ABC, if cosAa=tanCc, then sin(B+C) is equal to
cosBsinA
cosAcosC
cosAsinB
sinBsinC
Determine the value of sin(B+C)
Given, cosAa=tanCc
⇒cosAa=tanCc⇒cosAa=sinCcosC×1c⇒cosAa=sinCc×1cosC⇒cosAa=sinAa×1cosC[fromSinerule]⇒sinA=cosAcosC⇒sin(π-(B+C))=cosAcosC⇒sin(B+C)=cosAcosC
Hence, option (B) is correct.