In a triangle ABC, if cosA+cosB+cosC=7/4, then Rr is equal to
47
43
34
None of the above
Determine the value of Rr.
We know that, If A,B,C are the angles of a triangle, then cosA+cosB+cosC=1+4sinA2sinB2sinC2
∴1+4sinA2sinB2sinC2=74∵cosA+cosB+cosC=74,given⇒4sinA2sinB2sinC2=74-1⇒4sinA2sinB2sinC2=34
Multiplying and dividing LHS with R.
⇒R×4sinA2sinB2sinC2R=34⇒rR=34∵r=4×R×sinA2sinB2sinC2∴Rr=43
Hence option (B) is correct.