wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a ABC, if cosA+cosB+cosC=74, then Rr is equal to

Open in App
Solution

In a ABC,A+B+C=1800
cosA+cosB+cosC=74
2cos(A+B2)cos(AB2)+12sin2(C2)=74
2cos(π2C2)cos(AB2)+12sin2(C2)=74
2sin(C2)cos(AB2)+12sin2(C2)=74
2sin(C2)[cos(AB2)sin(C2)]=741
2sin(C2)[cos(AB2)sin(π2A+B2)]=34
sin(C2)[cos(AB2)cos(A+B2)]=38
sin(C2)×2sinA2sinB2=38 using transformation angle formula cosCcosD
sinA2sinB2sinC2=316
So that, r=4RsinA2sinB2sinC2
=4×316R
rR=4×316=34
Hence, Rr=43

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon