In a △ABC,A+B+C=1800
cosA+cosB+cosC=74
⇒2cos(A+B2)cos(A−B2)+1−2sin2(C2)=74
⇒2cos(π2−C2)cos(A−B2)+1−2sin2(C2)=74
⇒2sin(C2)cos(A−B2)+1−2sin2(C2)=74
⇒2sin(C2)[cos(A−B2)−sin(C2)]=74−1
⇒2sin(C2)[cos(A−B2)−sin(π2−A+B2)]=34
⇒sin(C2)[cos(A−B2)−cos(A+B2)]=38
⇒sin(C2)×2sinA2sinB2=38 using transformation angle formula cosC−cosD
⇒sinA2sinB2sinC2=316
So that, r=4RsinA2sinB2sinC2
=4×316R
⇒rR=4×316=34
Hence, Rr=43