In a triangle ABC, if cos(A−C)cosB+cos2B=0 then a2,b2,c2 are in
A
H.P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
G.P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A.P
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C A.P cos(A−C)cosB=−cos2B ⇒cos(A−C)cos(π−(A+C))=−cos2B ⇒−cos(A−C)cos(A+C)=−cos2B ⇒cos(A−C)cos(A+C)=cos2B ⇒cos2A−sin2C=1−2sin2B ⇒1−sin2A−sin2C=1−2sin2B ⇒sin2A+sin2C=2sin2B ⇒a2+c2=2b2 by sine rule. Hence a2,b2,c2 are in A.P.