In a triangle ABC, ifcot(A2)cot(B2)=c,cot(B2)cot(C2)=a, and cot(C2)cot(A2)=b, then1s−a+1s−b+1s−c=
Open in App
Solution
Given In a triangle ABC, cot(A2)cot(B2)=c ⇒√s(s−a)(s−b)(s−c)×s(s−b)(s−c)(s−a)=c ⇒ss−c=c ⇒1s−c=cs Again cot(B2)cot(C2)=a ⇒√s(s−b)(s−c)(s−a)×s(s−c)(s−a)(s−b)=a ⇒ss−a=a ⇒1s−a=as and cot(C2)cot(A2)=b ⇒√s(s−c)(s−a)(s−b)×s(s−a)(s−b)(s−c)=b ⇒ss−b=b ⇒1s−b=bs So that 1s−a+1s−b+1s−c =as+bs+cs =a+b+cs=2ss=2