In a △ABC, if D is the midpoint of BC and AD is perpendicular to AC, then
A
cosA=−bc
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
cosAcosC=−2b2ac
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
cosB=(b2+c2ca)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
a2−3b2−c2=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are AcosA=−bc BcosAcosC=−2b2ac CcosB=(b2+c2ca) Da2−3b2−c2=0 Draw BE⊥CA produced. Then, BD=DC=a2 and EA=AC=b From △ADC,cosC=ba2=2ba From △ABC,cos(π−A)=bc ⇒cosA=−bc So that cosAcosC=−bc×2ba=−2b2ca Also,cosA=−bc b2+c2−a22bc=−bc ⇒b2+c2−a2=−2b2 ⇒a2=3b2+c2 and cosB=c2+a2−b22ca substituting for a2=3b2+c2 ⇒cosB=a2+3b2+c2−b22ca ⇒cosB=2b2+2c22ca=b2+c2ca