wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a triangle ABC,if AB=120 and sinA2sinB2sinC2=132 then the value of 8cosC is

Open in App
Solution

AB=120andsinA2sinB2sinC2=132....(1)

Weknowthat2sinAsinB=cos(AB)cos(A+B)

2sinA2sinB2=cos(AB2)cos(A+B2)....(2)

AndwealsoknowA+B+C=πSoA+B=πC

So2sinA2sinB2=cos(1202)cos(πC2)=12sinC2....(3)

From(1)2sinA2sinB2sinC2=116

(12sinC2)(sinC2)=116

16sin2C28sinC2+1=0

SosinC2=14

cosC2=154cosC=2cos2C21=2×15161=78

So8cosC=7

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon