In a triangle ABC if tanA=12,tanB=k+12 and tanC=2k+12, then the possible value of [k], where [.] represents greatest integer function is
Open in App
Solution
Given tanA=12,tanB=k+12 and tanC=2k+12 In △ABC tanA+tanB+tanC=tanAtanBtanC ⇒3k+32=12(k+12)(2k+12) ⇒8k2−18k−11=0 ⇒k=4416,k=−12 Here, k=−12 (not possible as tanB=−12+12=0) Hence, possible value of k is 4416=2.75 So, [k]=2