In a △ABC, if L and M are points on AB and AC respectively such that LM || BC. Prove that:
(i)ar(△LCM)=ar(△LBM)(ii)ar(△LBC)=ar(△MBC)(iii)ar(△ABM)=ar(△ACL)(iv)ar(△LOB)=ar(△MOC).
Given : In △ABC,
L and M are mid points on AB and AC
LM, LC and MB are joined
To Prove:
(i)ar(△LCM)=ar(△LBM)(ii)ar(△LBC)=ar(△MBC)(iii)ar(△ABM)=ar(△ACL)(iv)ar(△LOB)=ar(△MOC).
Proof: ∵ L and M are the mid points of AB and AC
∴LM||BC
(i) Now △LBMand△LCM are on the same base LM and between the same parallels
∴ar(△LBM)=ar(△LCM)⇒ar(△LCM)=ar(△LBM)
(ii) ∵△LBCand△MBC are on the same base BC and between the same parallels
∴ar(△LBC)=ar(△MBC)
(iii)ar(△LMB)=ar(△LMC)⇒ar(△ALM)+ar(△LMB)=ar(△ALM)+ar(△LMC)⇒ar(△ABM)=ar(△ACL)
(iv) ∵ar(△LBC)=ar(△MBC)⇒ar(△LBC)−ar(△BOC)=ar(△MBC)−ar(△BOC)ar(△LBO)=ar(△MOC)