wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a ABC, if (a2+b2a2b2)sin(AB)=1, then either C is a right angle or cos(AB)=tan(C2π4).

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
(a2+b2a2b2)sin(AB)=1
Using sine rule
sin2A+sin2Bsin2Asin2B.sin(AB)=1
sin2A+sin2Bsin(A+B)sin(AB).sin(AB)=1
sin2A+sin2B=sin(A+B)
sin2A+sin2B=sin(πC)
1cos2A2+1cos2B2=sinC
1cos2A+1cos2B=2sinC
cos2A+cos2B=22sinC
cos2A+cos2B=2(1sinC)
2cos(A+B)cos(AB)=2(1sinC)
cos(πC)cos(AB)=2(1sinC)
cosCcos(AB)=2(1sinC)
cos(AB)=2(1sinC)cosC
cos(AB)=2(sin2C2+cos2C22sinC2cosC2)(cos2C2sin2C2)
=(sinC2cosC2)2(sin2C2cos2C2)
=(sinC2cosC2)2(sinC2+cosC2)(sinC2cosC2)
=(sinC2cosC2)(sinC2+cosC2)
Divide both sides by cosC2 we get
=tanC21tanC2+1
Take 1=tanπ4
=tanC2tanπ4tanπ4tanC2+1
=tan(C2π4)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon