In a △ABC, if (a2+b2a2−b2)sin(A−B)=1, then either C is a right angle or cos(A−B)=tan(C2−π4).
A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A True (a2+b2a2−b2)sin(A−B)=1 Using sine rule ⇒sin2A+sin2Bsin2A−sin2B.sin(A−B)=1 ⇒sin2A+sin2Bsin(A+B)sin(A−B).sin(A−B)=1 ⇒sin2A+sin2B=sin(A+B) ⇒sin2A+sin2B=sin(π−C) ⇒1−cos2A2+1−cos2B2=sinC ⇒1−cos2A+1−cos2B=2sinC ⇒cos2A+cos2B=2−2sinC ⇒cos2A+cos2B=2(1−sinC) ⇒2cos(A+B)cos(A−B)=2(1−sinC) ⇒cos(π−C)cos(A−B)=2(1−sinC) ⇒−cosCcos(A−B)=2(1−sinC) ⇒cos(A−B)=2(1−sinC)−cosC ⇒cos(A−B)=2(sin2C2+cos2C2−2sinC2cosC2)−(cos2C2−sin2C2) =(sinC2−cosC2)2(sin2C2−cos2C2) =(sinC2−cosC2)2(sinC2+cosC2)(sinC2−cosC2) =(sinC2−cosC2)(sinC2+cosC2) Divide both sides by cosC2 we get =tanC2−1tanC2+1 Take 1=tanπ4 =tanC2−tanπ4tanπ4tanC2+1 =tan(C2−π4)