We are given r1=2r2=3r3
⇒stan(A/2)=2stan(B/2)=3stan(C/2)
⇒tan(A/2)6=tan(B/2)3=tan(C/2)2=k(say)
Since A/2+B/2+C/2=90o
tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1
⇒(6.3+3.2+2.5)k2=1⇒k=1/6
So that sinA=2tan(A/2)1+tan2(A/2)=1
Similarly sinB=4/5
and ab=sinAsinB=54⇒4a5b=1
∴[100−(4a/5b)]2=(1000−1)2=992
=9801