In a △ABC, if sinA=x,cosB=y, then cos2C=x2−2xysinC+y2.
A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A True Given:sinA=x⇒cosA=±√1−x2 and cosB=y⇒sinB=±√1−y2 We have A+B+C=π ⇒sinC=sin(π−(A+B)) =sin(A+B) =sinAcosB+cosAsinB =xy±√1−x2√1−y2 =xy±√(1−x2)(1−y2) and cosC=cos(π−(A+B)) =−cos(A+B) =−[cosAcosB−sinAsinB] =sinAsinB−cosAcosB =±x√1−x2−(±y√1−x2) =±x√1−x2±y√1−x2 cos2C=x2(1−y2)+y2(1−x2)±2xy√(1−x2)(1−y2) =x2+y2−2x2y2±2xy√(1−x2)(1−y2) =x2+y2−2xy[xy±√(1−x2)(1−y2)] =x2+y2−2xysinC where sinC=xy±√(1−x2)(1−y2) from above